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Abstract

Power transformers are important electrical equipments that need fast protection, because of
their essential role in power system operation and their expensive cost. The most common technique
used to protect the transformer is the differential relay, but it doesn't provide discrimination between
internal fault and inrush currents. This paper presents an algorithm based on recurrent neural network
(RNN) as a differential protection for three phase two windings transformer. The algorithm uses both
the primary and secondary currents and second order harmonics of currents to discriminate between
internal fault and inrush currents. A comparison among the performance of three neural networks
based classifiers is presented. These networks are: FFBPNN (feed forward back propagation), cascade-
forward back propagation network (CFBPNN), and proposed recurrent network (RNN). The
transformer fault conditions are simulated using PSCAD/EMTDC in order to obtain the primary and
secondary current signals. These current signals are used to train and test the neural networks which
implemented by Matlab/Simulink. The test results prove that the RNN is stable and give good
behaviors for different fault conditions. It is more reliable for recognition of transformer inrush and
internal fault currents.
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1. Introduction

Power transformer is an important and expensive
component of power systems. Occurrence of faults can
cause damage to the transformer, so detecting winding
faults with high sensitivity, speed and reliability is
necessary to clear faults to avoid the transformer
damage [1].

The differential protective system establishes the
main protection against internal faults on transformer
windings [2]. It is based on the comparison of the
measured currents on both power transformer sides.
The differential relay trips whenever the difference of
the currents in both sides exceeds a predetermined
threshold. This technique is accurate for transformer



internal faults. However, there are some factors that
can cause mal-operation of differential relay such as
over excitation, saturation of current transformer,
transformer tap changer operation and inrush currents

[3].

Inrush currents are generated by transients in
transformer magnetic flux. The magnetizing inrush
current, which occurs during energizing of the
transformer, generally results in several times full load
current and therefore can cause mal-operation of the
relays [4]. When the transformer tap changer is moved
up and down with respect to the middle point at which
the relay is adjusted to, the differential relays may be in
mal-operation. Such mal-operation of differential
relays can affect both the reliability and stability of the
whole power system. Inter-turn (turn-to-turn) fault is
one of the most important failures which could occur in
power transformer [5]. Such faults are extremely
difficult to detect since they induce negligible increase
of the currents at the transformer terminals, although
the currents flowing at the fault place are very high and
dangerous for the transformer [6].

To enhance the reliability of differential
protection, signals other than current have also been
utilized. The use of voltage signals was proposed in
[7]. A method based on differential power has been
proposed in [8], to recognize fault conditions from
inrush current conditions. In [9] a proposed method
based on modal transform of voltage and current
waveforms was presented. The disadvantages of these
methods include the need to use voltage transformers
and the increased cost of the protection system.
Another class of methods identifies fault conditions
based on using the second order harmonic component
as a discriminator factor between inrush and internal
fault current [10-13]. The main drawback of this
method is the possibility of generation of the second
order harmonic component during faults due to CT
saturation [13]. Another technique uses the waveform
fluctuations of differential current. The method based
on measuring the time between the respective peaks of
differential current. The method depends on the fact
that the time interval between two respective peaks in
case of inrush current is smaller than the time interval
in the fault current. The length of time that the current
waveform stays close to zero is the main idea in [14].
Delayed fault detection is the main disadvantage of that
algorithm.

Early methods were based on desensitizing or
delaying the relay to overcome the transients [15].
These methods are unsatisfactory nevertheless, since
the transformer was exposed to long unprotected times.
Ref. [10,16] use the wave shaped recognition

technique, this technique depends on fixed threshold
index (either in time domain or in frequency domain)
and these may require large computational burden. In
[17], a wavelet-based method has been presented. The
drawback of this method is that it requires the
measurement of both voltage and current which
increases the cost of hardware implementation.

Recently various Atrtificial Intelligence (Al) based
algorithms are introduced to power transformer
protection. Among of these techniques, the artificial
neural networks (ANN) are considered as a powerful
tool for solving the problems of transformer protection.
ANN  possesses excellent features such as
generalization capability, noise immunity, robustness,
and fault tolerance. Consequently, in most cases the
decision made by an ANN based relay would not be
seriously affected by variations in system parameters.
In particular, ANNs have been applied to protective
relaying to improve power transformer protection [18-
25].

This paper presents an algorithm based on
recurrent neural network (RNN) as a differential
protection scheme for three phase two windings
transformer. The algorithm uses the primary and
secondary currents and second order harmonics to
discriminate between internal fault and inrush currents.
The paper compares the proposed method with other
neural networks such as the feed forward back
propagation neural network (FFBPNN) and cascade-
forward back propagation neural network (CFBPNN).

2. Power system modeling and simulation

The studied power system consists of a three
phase source connected to a load through a three phase
power transformer 110/10.5 kV, 100 MVA, as shown
in Figure 1. The transformer has a star-star-to-ground
connection. The data required for training and testing
the neural networks are developed by modeling and
simulating the studied power system using the
PSCAD/EMTDC software package. Figure 2 shows the
PSCAD test model. The necessary information required
to generalize the problem are obtained from simulation
results. Different types of internal winding faults are
simulated at different, percentage of windings, and
inception time. For the secondary and primary sides of
the transformer, the CT ratios are chosen as 1257:1 and
120:1 respectively. The transformer operating
conditions tested in this paper include:

e Normal,

Magnetizing inrush current,
Over excitation,

Internal fault.

External fault
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Figure 1: Single line diagram of the test system

In this study, many cases have been simulated and
implemented for different transformer conditions.
Figure 3 shows the current waveforms of the two sides
of transformer at normal operation. The connected load
is 100 MVA at lagging 0.9 p.f. The three phase primary
currents are illustrated in Fig. 3-a, and the three phase
secondary currents are shown in Fig. 3-b. The peak
value of the currents in the two sides equal to 1.3 p.u.

Figure 4 shows the currents in case of internal
fault condition. An internal single phase to ground fault
occurred at 0.22 sec, fault occurred at 50% of primary
winding of phase A with a fault resistance of 1 Q. The
value of the primary current in phase A increases to 30
p.u during the fault duration. On other hand, the value

of the secondary current in phase A decreases to 0.5
p.u.

In case of external fault condition, a three phase to
ground fault is applied at the secondary side (out the
transformer protection zone). The fault starts at time of
0.22 sec. The results show that the primary and
secondary currents are raised to 8 p.u during the fault.
Figure 5 shows the transformer currents in this case.

Figure 6 illustrates the current waveforms in case
of inrush condition with no-load (due to transformer
energization). The inrush current increases to 4.5 p.u
but still less than the current in case of internal fault
explained by Fig. 4.

The final case study is the over excitation
condition. In this case the transformed is overexcited
by 150% of rated voltage. The primary currents
increase to 5 p.u (see Fig. 7-a), while the secondary
side currents decrease to about 0.08 p.u. (see Fig .7-b).
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Figure 3: Current waveforms for normal operation condition.
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Figure 4: Current waveforms in case of internal fault condition
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Figure 6: Current waveforms under inrush condition
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Figure 7: Current waveforms in case of over excitation condition

3. Harmonics Restrain

Harmonics restrain is based on the fact that the
inrush current second-harmonic component is larger
than that of internal fault current. Figure 8 shows the
simulation of second harmonic components of
magnetizing inrush and internal fault currents occurred
at 0.1 sec. These harmonics can be used to restrain the
relay from tripping during inrush current condition.
They can be used to obtain better discrimination
between inrush and internal fault currents.
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Figure 8: Second harmonic components of magnetizing
inrush and internal fault



4. Artificial Neural Network (ANN)

Artificial  neural  networks (ANN) are
computational models inspired by the human brain.
They are composed of a large number of highly
interconnected processing elements (neurons) working
in unison to solve specific problems. Each neuron has
an activation function and many inputs and outputs.
Neural networks with hidden units are universal
approximations, which theoretically mean that they are
capable of learning an arbitrarily accurate
approximation to any unknown function. Their
complexity is increased at a rate approximately
proportional to the size of the training data. Neural
networks can be applied to time series modeling
without assuming a priori function forms of models
[13].

Using different time-lagged input variables is the
simplest way to include temporal information into a
multilayer feed forward network. For a target series
s(t), series {s(t—1),s(t=2), .. , s(t —t) } can be used as
input variables. Selecting the proper time lags and the
informative set of input variables are critical to the
solution of any time series prediction problems.

A dynamic neural network requires a given
memory. There are two techniques to accomplish this
requirement. The first one is the Time Delay Neural
Networks (TDNNs). These networks are multilayer
feed forward neural networks. They provide simple
forms of dynamics by buffering lagged input variables
at the input layer and/or lagged hidden unit outputs at
the hidden layer. The standard back-propagation
algorithm is used for training these networks [10,14].

The second technique is the recurrent networks
which have feedback connections from neurons in one
layer to neurons in a previous layer. A typical recurrent
network has concepts bound to the nodes whose output
values feed back as inputs to the network. So the next
state of a network depends not only on the connection
weights and the currently presented input signals but
also on the previous states of the network. The network
leaves a trace of its behavior; and keeps a memory of
its previous states. Depending on the architecture of the
feedback connections, there are two general models of
recurrent networks: (1) partially recurrent, and (2) fully
recurrent.

The back-propagation-through-time algorithm for
training a recurrent network is an extension of the
standard back-propagation algorithm. It may be derived
by unfolding the temporal operation of the network into
a layered feed forward network, the topology of which
grows by one layer at every time step. The recurrent
neural network (RNN) has some advantages over

feed-forward neural network FFNN such as faster
convergence, more accurate mapping ability, etc., but
it is difficult to apply the gradient-descent method to
update the neural network weights in RNN [15].

5. The Proposed NN

The ANNSs which used in transformer protection
are the FFBPNN and CFBPNN. The CFBPNN is just a
FFBPNN that has time delay inputs in order to adapt
the architecture to manage time variable signals.
Compared to other existing approaches to deal with
temporal data, recurrent networks have generated
interest mostly because of their capability of
implementing adaptive long-term memories. They have
feedback connections from neurons in one layer to
neurons in a previous layer. This kind of NNs has
proven good performance in time series prediction; it
can be a good choice for power transformer protection.
In this study an RNN is proposed to diagnosis the
different conditions in transformer as explained by Fig.
9.

Thrue input  Input Layer
units

Hidden Layer

Output Layer

internal

20

External
0010

Inrush
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Figure 9: The proposed recurrent neural network

5.1 Training data generation

The simulated cases are divided into three
groups. The first is the training group and its patterns
are selected randomly and normally distributed in
order to generalize ANN and prevent skew learning.
The second group is used to validate the ANN during
the training process and the last one is the test group.
In this study the training sets consist of 1152 patterns
obtained from simulating the transformer states at
different conditions which can be classified as shown
in Table 1.



Table 1 Training patterns of NN

Transformer condition No_ pattern
Normal operation 108
Internal fault 756
Over excitation 108
External fault 63
Inrush current 117

5.2 Inputs and outputs selection of RNN

The input data is collected by measuring the

three-phase currents at the two sides of the
transformer and the second harmonics current. Long
data window of inputs enables protective algorithms
to get more information and in turn resulting in stable
performance. On the other hand, long data window
leads to slow decisions. After analyzing the
simulation results and having acceptable NN
performance, a length of data window of 5 samples is
selected at a sample rate of 1 kHz for a 50 Hz power
frequency. Each of the measured currents is
represented by 5 samples and a second harmonic,
making a total of 36 inputs. Hence, the network’s
input consists of:
Tas(MT, Tas(N-1)T, §as(N-2)T, 1as(N-3)T, ips(N) T, ins(n-1)T,
ibs(n'z)T, ibs(n'3)T, ics(n)T: ics(n'l)Tn ics(n'Z)T: ics(n'
AT, ixp(MT, igp(N-1)T, ip(N-2)T, iap(n-3)T, ipp(N)T,
ipp(N-D)T, igp(N-2)T, ipp(N-3)T, ip(N)T, icp(N-1)T, icp(n-
Z)T, icp(l’l-3)T, ihrms(l)v ihrms(z)v ihrms(g)a ihrms(4)r ihrms(s’),
ihrms(G)-

The patterns normalize the output to be within [0,
1] range. To represent different transformer conditions;
the network needs 4 neurons in output layer. Table 2
illustrates the output of the proposed network.

Table 2 Output of the proposed NN.

Transformer condition Output
Normal operation 0000
Internal fault 1000
Over excitation 0100
External fault 0010
Inrush current 0001

5.3 Design procedure of the RNN
The design process of the proposed NN follows
the following steps:

1. Prepare a suitable training data set that represents
the cases required for learning the NN, and apply
the input vector to the input layer.

2. Select a suitable NN structure.

3. Select training pair from the training set and
calculate the output of the NN.

4. Calculate the error between the network output and
the desired output.

5. Adjust the weights of the network in a way that
minimizes the error

6. Repeat steps from 1-4 for each vector in the
training set until its performance is satisfactory.

It is important to understand that the design
process is iterative. It is possible that a particular NN
structure selected in step 2 may not train to designer's
satisfaction. In this situation, the structure and
parameters must be changed and the network retrained.
Figure 10 shows the flow chart of the proposed
protection algorithm.
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Figure 10: Flow chart of the proposed algorithm.



5.4 Architecture of the proposed NN

The number of neurons in each hidden layer, and
the number of time delay have been selected by trial
and error method. Different RNN structures, with
different considered number of neurons in their hidden
layers are consider and trained. Training and testing
patterns are generated by simulating different types of
faults on different locations and phases regions of the
simulated system. The proposed network is a small
sized and gives satisfactory results. It consists of 20
neurons in the first hidden layer, 18 neurons in the
second hidden layer and 4 neurons in the output layer.
The number of time delay units is two for the output
layer. The RNN structure of the fault classifier is (36-
20-18(2)-4). The used activation function is a log
sigmoid function. The RNN-based algorithm is tested
to evaluate the performance of the proposed method in
terms of accuracy, robustness and speed.

6. Test and Results

The simulated power system model was tested by
subjecting it to different types of internal fault, external
fault, over excitation and magnetization inrush
conditions. After training the proposed RNN fault
classifier, a test was carried out for many case studies
include different fault conditions and different power
system data for each type of fault. The classification
accuracy was calculated by using the follows equations
[26]:

% Classification error

no . of false positive + no . of false negative 100
= *
total nomber of test cases

% Classification accuracy =
100 — % classification error (1)
The three types of ANN FFBPNN, CFBPNN,
proposed recurrent network (RNN) are tested and
simulated for the same tanning and tested data in this
paper. Table 3 shows a comparison between the three
types of ANN.
7. Case studies

The proposed RNN is applied to many case
studies. In this section we will present four cases to
illustrate the diagnosis ability of proposed method. The
results indicate that the proposed network is able to
classify faults very fast and reliably. The network
performance is shown in Figure 11 to Figure 14 for the

studied conditions. The following items discuss the
results of each case study.

Table 3 Classification accuracy for FFNN, CFNN and

RNN
No. of pattern for
Test case @ %
Network | gircture | z |5 | | 3 2135
Type 2 D o c = \O g
31313 Sl |9<
2 |2 |2 =2 N
FFBPNN | 36-20-18-4| 30 (20 |15 |20 |15 | 7| 93
CFBPNN | 36-20-18-4 | 30 |20 |15 |20 |15 |5 |95
RNN 36-20-18-4 | 30 |20 |15 |20 {15 |2 |98

7.1 RNN response to external faults

Figure 11 shows the condition of external fault of
double phase to ground (A-B-g) starts at 0.205 sec.
Figure 11-a and 11-b show the three phases primary
and secondary currents respectively. Figures 11-c to
11-f illustrate the output of the RNN as a function of
the time (sec). These results simulate the output of [0 O
1 0] for a fault occurrence and represent the external
fault state.

7.2 RNN response to magnetizing inrush case

This case represents the condition of inrush
current occurring at 0.1 second. Figure 12 illustrates
the current wave-forms and the RNN outputs for this
case study. The results simulate the output of [0 0 0 1]
when the transformer is energized and represent the
inrush current state.

7.3 RNN response to internal faults

This case represents the condition of an internal
fault state. The fault is a three phase to ground fault
starts at 0.3 sec, and is applied at 65% of primary
winding turns. Figure 13 illustrates the results for this
case study. These results simulate the output of [1 0 O
0] for a fault occurrence and represent the internal fault
state.

7.4 RNN response to over excitation

The tested over excitation condition occurs at 0.1
sec. Figure 14-a and 14-b show the three phase
primary and secondary currents respectively. Figures
14-c to 14-f show the outputs of the RNN. These
results simulate the output of [0 1 0 0] when the
transformer is over excited and occurs to represent the
over excitation state.
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8. Conclusion

This paper described a protection technique which
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